
 James Lyndsay, Workroom Productions Ltd.

Four Exercises for Teaching Exploratory Testing v 1.0 1

Four Exercises for Teaching Exploratory Testing
James Lyndsay, Workroom Productions Ltd.

jdl@workroom-productions.com

London, 2006

Abstract
This paper describes four exercises designed to help
teach frameworks for exploration of working software,
including test design and judgement of problems.

Practical tuition in exploratory software testing needs
software for students to actively explore. To allow
genuine exploration, the software must be new to the
students. A full sized system is often taken as the test
subject for some courses, and for on-the-job experience.
In contrast, these exercises make use of small systems
constructed to reinforce the techniques taught.

Terms
Exercise: a hands-on exploration of known software to
allow experience of a framework.

Framework: a repeatable process to guide exploration.

Machine: Test subject for an exercise. In these exercises,
a Flash ‘movie’ file that can be executed with
appropriate player software.

1. Background
Received wisdom says that most commercial testers
make use of unscripted techniques. Their unscripted
approaches are most often undisciplined, and hidden
from individuals outside the immediate team. This
understanding matches my own experience – and I have
also found that an individual tester typically makes use
of a single style of unscripted testing, or focuses on a
single type of target. This second characteristic can
potentially be addressed with explicit exposure to a
wider range of exploratory techniques.

In ‘An Introduction to General Systems Thinking’ [1],
Weinberg describes some abstract machines. Their
purpose is initially unclear, but can be deduced. An
investigator makes observations, some based on
stimulus. The observations are analysed, and a
hypothesis reached and tested. Different observers reach
different hypotheses.

The exercises below are inspired in part by Weinberg’s
machines. In the exercises, observation leads to a
model, which can be tested by further stimulus.

These exercises have been used in public and private
commercial training since mid 2002. Aside from their
immediate use in training testers to explore systems in a
variety of ways, the exercises have proved particularly
helpful in generating discussion about fundamental
ideas of analysis. The teaching notes, which were
developed two years after the machines, reflect some of
these discussions.

The exercises have been used by third parties as part of
candidate assessment. It should be noted that the
exercises have no ‘right answer’.

2. Typical use
The exercises have been used in public and private
commercial classes of one or two days duration. Class
sizes are limited to twelve students. Students work
singly, or in pairs – so there should be at least half as
many computers as students. Most students are
experienced testers, with a year or more hands-on
testing in their recent past.

The exercises and associated machines have also been
used in larger and shorter classes, as demonstrations,
and with non-testers.

3. Exercises

3.1. In / Out (Machine A)

This exercise introduces a framework that helps in
building a model of the subject. Students are asked to
study the machine and list its inputs and outputs. Once
this is complete, the students are asked to study and
describe the possible linkage between the recognised
inputs and outputs.

There is no clear space in the framework to list the
functionality of the machine. Students who concentrate
on the functionality should be guided to stay within the
framework: it is designed in part to encourage students
to work in a potentially novel way, and to feel the
discipline in controlled exploration.

‘Input’ and ‘output’ are not defined. This allows the
exercise to lead to an important class discussion of what
might characterise an input or an output. This can in
turn lead to a broader list of possible inputs and outputs.

Please see the attached teaching notes for details and
further information.

The model developed is used in later exercises (against
Machine D).

The learning objectives of this exercise are:

• Experience of a basic modelling framework

• Experience of a disciplined approach

• Improved understanding of inputs and outputs

• Stimulus to imagination (possible inputs /outputs)
to help improve analysis

3.2. Event / Behaviour (Machine B)

This exercise introduces a second framework that helps
in building a different model of the subject. Students are
asked to identify any events and their effects, and to list
and group the subject’s behaviours.

Once again, students who concentrate on ‘what the
machine is doing’ without placing their enquiries or
statements within the context of the framework should

 James Lyndsay, Workroom Productions Ltd.

Four Exercises for Teaching Exploratory Testing v 1.0 2

be guided to restate their information or re-direct their
exploration.

The machine stops working after one inevitable event.
While students can affect when this happens, they
cannot avoid it – or trigger it – directly. This encourages
students to move away from the mistaken understanding
that they are in control of the machine. Once stopped,
the machine cannot be reset without reloading the file.
This encourages students to think of test activities
outside the functionality of the machine.

‘Event’ and ‘behaviour’ are not defined. This allows the
exercise to lead to an important class discussion of what
might characterise an event or a behaviour. This can in
turn lead to an understanding of states and state
transitions.

This machine has an intentional bug, typically seen in
by one or two people in the class, early in testing. It is
audible to all, but not initially easy to reproduce.
Drawing a state diagram to model the system helps
make the reproduction simpler, providing a positive
learning experience.

Please see the attached teaching notes for details and
further information.

The learning objectives of this exercise are:

• Experience of a second basic modelling framework

• Experience of an event that is not under tester
control

• Improved understanding of states

• Improved understanding of use of modelling and
analysis techniques in exploratory testing

Framework based in part on ‘active play’ ideas from
Hendrickson [2].

3.3. Judgement: Cultural expectations
(Machine C)

This exercise introduces a framework that helps in
discovering, classifying and judging potential problems.
The framework involves identifying ‘inconsistencies’,
‘absences’ and ‘extras’ between the test subject and
other artefacts; the students may have already been
introduced to this framework in an exercise that uses a
physical text. In this exercise, they are asked to apply
the framework to a countdown timer, in comparison
with their cultural expectations.

The exercise is typically time-limited – students have a
few minutes to test, while the timer has a default 20-
minute countdown. The exercise can be improved for
some classes by working through a short risk assessment
before starting the hand-on testing. Some testers will
need to be guided to explicitly consider the influence of
these two contexts on their test design.

Once testing has completed, the class should take the
opportunity to discuss the choices they made before and
during testing. The machine is not return good results
from the In/Out and Event/Behaviour frameworks within
the short time available, and students will typically
return to their usual approaches when testing this
machine. For instance, some will attack the input, some
will look for usability errors, and some will simply let
their 20-minute timer count down for the duration.

There is no specification for the machine, although
some students will discover a partial specification in the
help text. Some students may feel unable to log any
bugs, while others may choose to identify wide range of
characteristics as problems. Class discussion allows the
students to compare their judgement with that of their
peers, and may help them to refine their understanding.

Please see the attached teaching notes for details and
further information.

The learning objectives of this exercise are:

• Experience of a basic judgement framework

• Improved understanding of effect of context and
experience on test design

• Stimulus to imagination (possible problems) to
help improve judgement

3.4. Judgement: Inconsistency
(Machine D)

This exercise introduces a different context for the
judgement framework used in the exercise above. In this
exercise, students are asked to apply the framework to
differences between Machine A and Machine D. The
students are asked to imagine that these machines are
two different versions of the same product.

To avoid judgement based on a perception of some
functionality being more desirable than another, there is
no indication of error correction; the students are not
told which machine might be an earlier version. The
exercise can be improved for some classes by making
reference in the earlier exercise to characteristics such
as the different behaviour of the buttons, or the linearity
of the dial’s response to the slider.

Students typically take one or two of the following
approaches to discover the differences:

• Using equivalent tests on both machines side-by-
side

• By comparison with the model built in the first
exercise

• By comparison with their memory of Machine A

Students should be encouraged to discuss the
differences and relative merits of their approaches. This
discussion can happen after testing is complete, but
should be kept separate from discussion of the
judgement of the differences found.

As in the previous exercise, different students will have
different results, and it helps to have a short discussion is
to allow general agreement on the differences that exist.
Once these are recognised, students have clear targets to
judge. Some differences are more likely to be bugs than
others; students should be asked which they would log
and under what circumstances, and should be
encouraged to justify their judgement. In particular,
attention can be focussed on further (perhaps
hypothetical) tests that could add weight, or introduce
alternatives, to their judgement.

Please see the attached teaching notes for details and
further information.

The learning objectives of this exercise are:

 James Lyndsay, Workroom Productions Ltd.

Four Exercises for Teaching Exploratory Testing v 1.0 3

• Improved understanding of effect of test technique
on bug discovery

• Improved understanding of use of diagnostic tests
to judge problems found.

• Improved understanding of effect of context on
judgement.

5 Results from teaching
Feedback on the exercises during the usual 1-2 day
course is generally positive. However, 10-20% of
students feel at least initially uncomfortable with the
incomplete definitions in the first two exercises. A
smaller proportion of students are uncomfortable testing
or judging bugs without a specification.

Feedback gathered at the end of each course is positive,
but the effects of the exercises cannot be clearly
distinguished from the rest of the course material and
delivery.

No information has yet been collected about retention
or use of the frameworks after the course, or the effects
of this training on the effectiveness of testers.

6 Further progress
Exercises and frameworks for mapping, attacking and
the effects of notation on observation have been
developed, but are not yet publicly available.

There is a clear need to study the effectiveness (or
otherwise) of these exercises in teaching exploratory
testing.

7 Conclusion
It is hoped that the exercises described in this paper will
complement existing teaching approaches, and help
expose testers to different exploratory approaches.

8 Acknowledgements
The author would like to acknowledge the contributions
of the numerous reviewers and students who have
helped refine the exercises and their teaching notes.
Particular credit should go to Alan Richardson for
planting the initial thought, and to Robert Sabourin and
James Bach for their involvement and comments.

9 References
[1] G.M. Weinberg, An Introduction to General
Systems Thinking, (Dorset House, 2001), Ch. 4, 87-101

[2] E. Hendrickson, Discovery Zone: A guide to
Software Bug Habitats, proceedings of STAREast 02

[3] Worldwide Ubiquity of Macromedia Flash by
Version: http://www.macromedia.com/software/player
_census/flashplayer/version_penetration.html

10 Appendices

10.1 Choice of Technology

The machines are have been developed in Flash.
Although this requires investment in a proprietary
development environment, the files produced have the
following advantages:

• Execution is within a ‘player’:

• Reliably cross-platform

• Code to handle I/O, exceptions, screen
drawing etc. is not part of executable

• Does not install .dlls

• Can be run from read-only media – does not
need prior installation

• Small size

• Attractive interface encourages interaction

• Interactions are (mostly) limited by default

The machines are written to work in players of version 5
or later (version released in July 2000). The flash player
is installed on most personal computers (penetration
97% ±2% [3]).

Explicit code is written in ActionScript; excerpted
listings below.

10.2 Potential for failure

Problems have been observed in use. Most commonly,
the machines do not run because the Flash player has
been uninstalled, or is prevented from running by
security software.

Older computers may show slow response, particularly
low power laptops built before 2000. It was sometimes
possible to observe a progressive slowdown on these
low-power computers. This issue was traced to a coding
error in the Flash machines; releasing a slider did not
properly relinquish control. This was thought to have
triggered a memory leak under the Flash 5 player. The
error has been addressed in the current machines.

It is possible to write Flash files which stress or exploit
the player application, and so can trigger problems in
the browser and the operating system. The machines for
these four exercises are designed to avoid these hazards.
One browser crash has been observed, while using a
machine that shipped with the error referred to above.

10.3 Machine Architecture

The machines are all built on the same architecture.

• Flash files are movies. Each movie has a frame
rate; typically 20fps for the machines used in these
exercises. Once initialised, the movie loops on the
same frame, running the main subroutine 20 times
a second.

• Buttons, dials etc. are objects. These objects have
variable linked to some aspect of their appearance;
user interaction with the appearance of the object
can change the variable, and the variable can
change the appearance of the object.

 James Lyndsay, Workroom Productions Ltd.

Four Exercises for Teaching Exploratory Testing v 1.0 4

• The main subroutine collects variables from on-
screen objects are into an array. The array is
transformed, and some on-screen objects receive
new values for their variables, changing their
appearance.

The mouse-driven interface means that only one point
on-screen can be interacted with at a time. This
limitation is important to some exercises, but can be
avoided by introducing objects that react to key presses
and other events.

All machines built on this architecture have by default a
session timer, help text and a commercial / licensing
message. Machines are ‘published’ to run on the Flash 5
player or better.

Although Machine C is constructed within the same
working architecture, the working code is distributed
between a dozen or more interlinked objects. This code
has not been included here.

10.4 Code

Shared engine

onClipEvent (enterFrame) {

 put_output_info(translate(get_input_info()))

}

Machine A

function translate(input) {

 output = new Array(12);

 output[0] = input[0];

 output[1] = input[1];

 output[2] = input[2];

 output[3] = input[3];

 return output;

}

//

function get_input_info() {

 input = array(12);

 input[0] = inp_mov_01.var1;

 input[1] = inp_mov_02.var1;

 input[2] = inp_mov_03.var1;

 input[3] = inp_mov_04.var1;

 input[4] = inp_mov_05.var1;

 input[5] = inp_mov_06.var1;

 return input;

}

//

function put_output_info() {

 out_mov_01.var1 = output[0];

 out_mov_02.var1 = output[1];

 out_mov_03.var1 = output[2];

 out_mov_04.var1 = output[3];

}

Machine B

function translate(input) {

 output = new Array(12);

 output[0] = input[0];

 output[1] = input[1];

 output[2] = input[2];

 if ((input[4] <> 1) && (input[5] <> 1))

 {

 output[0] = input[0] + 1;

 if (input[3] <> 0)

 {

 output[1] = input[1] + 1;

 }else{

 output[2] = input[2] + 1;

 }

 }

 if ((input[6] == 1) && (input[7] == 1))

 {

 output[3] = 1;

 }

 return output;

}

//

function get_input_info() {

 input = array(12);

 input[0] = out_mov_01.var1;

 input[1] = out_mov_02.var1;

 input[2] = out_mov_03.var1;

 input[3] = inp_mov_01.var1;

 input[4] = out_mov_04.var1;

 input[5] = out_mov_05.var1;

 input[6] = out_mov_02.var2;

 input[7] = out_mov_03.var2;

 return input;

}

//

function put_output_info() {

 out_mov_01.var1 = output[0];

 out_mov_01.start_at = 0;

 out_mov_01.range = 120;

 out_mov_02.var1 = output[1];

 out_mov_02.start_at = 0;

 out_mov_02.range = 100;

 out_mov_03.var1 = output[2];

 out_mov_03.start_at = 0;

 out_mov_03.range = 100;

 out_mov_06.var1 = output[3];

 if (out_mov_02.var1 > out_mov_02.range)

 {

 out_mov_04.var1 = 1;

 out_mov_07.var1 = 1;

 }

 if (out_mov_03.var1 > out_mov_03.range)

 {

 out_mov_05.var1 = 1;

 out_mov_07.var1 = 1;

 }

}

Machine D

function translate(input) {

 output = new Array(12);

 if ((input[0] == 1) && (input[2] <>1))

 {

 output[0] = 1;

 }else{

 output[0] = 0;

 }

 output[1] = input[1];

 output[2] = input[2];

 output[3] = (input[3] * input[3])/100;

 output[4] = input[3];

 return output;

 }

//

function get_input_info() {

 input = array(12);

 input[0] = inp_mov_01.var1;

 input[1] = inp_mov_02.var1;

 input[2] = inp_mov_03.var1;

 input[3] = inp_mov_04.var1;

 input[4] = inp_mov_05.var1;

 input[5] = inp_mov_06.var1;

 return input;

}

//

function put_output_info() {

 out_mov_01.var1 = output[0];

 out_mov_02.var1 = output[1];

 out_mov_03.var1 = output[2];

 out_mov_04.var1 = output[3];

 out_mov_05.var1 = output[4];

}

10.5 Rights

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 2.5 License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/2.5/ or
send a letter to Creative Commons, 543 Howard Street,
5th Floor, San Francisco, California, 94105, USA.

10.6 Teaching notes

Attached below, from pre-prepared .pdf.

Contact
James Lyndsay

Company: Workroom Productions Ltd.

Website: http://www.workroom-productions.com

Email: jdl@workroom-productions.com

AIM: workroomprds

Tel: +44 (0) 20 7372 6986

Mobile: +44 (0) 7904 158 752

Using the exercises

Open index.html in a browser

Use the test machine in the support section to check that you have

the flash plugin.

Follow the links for the four exercise machines A-D

Role of the trainer / coach

You need to present the technique or discipline, coach participants

as they test during the exercise, and facilitate discussion after the

exercise.

Different exercises puzzle different people. You have to pay close

attention and decide whether to intervene, or let to let a participant

arrive at a solution themselves.

Technology

The machines have been developed in Flash 5, allowing:

Compatibility across browser, OS and platform.

Use without installation - can be run from CD or network

Small size

Getting a Grip on Exploratory Testing: Exercises

Many competent testers use one or two exploratory approaches, but are not comfortable

working outside that range.

In the course Getting a Grip on Exploratory Testing, I teach a variety of exploratory

techniques. By exposing participants to a range of techniques and disciplines, I have tried

to put testers in a position where they gain an appreciation of their own style, and of the

range of options available.

To teach the techniques, I have developed an number of interactive machines. Each of

these machines has been designed primarily to help teach a specific technique –

although other trainers may find different uses.

I have decided to make the machines available through testingeducation.org. This

document is part of that distribution, and contains teaching notes for each machine.

Exploration is a process of learning, so if you have received this document as part of a

class in exploratory testing, you need to know that you will get much more from the

exercises if you put this document aside.

The notes for each machine contain a brief description of the exercise I use to teach a

technique or discipline, and an example of work that a keen student might produce.

Separate sections cover what you should know about the deeper structures of the

machine, and what you might want to look out for while teaching to assess the progress

of a class.

If you still plan to read the teaching notes without doing the exercises, I have to assume

that you are the kind of person who does yesterdays crossword by looking at the answers

in today's paper.

Copyright Workroom Productions Ltd., 2003-2005.

Distributed via testingeducation.org.

Licence to machines and notes: http://creativecommons.org/licenses/by-sa/2.0/

My thanks to the people –!particularly Alan Richardson, James Bach and Robert

Sabourin –!who have encouraged me to develop these exercises, and to the colleagues

and course participants who have taught me how to teach them.

Machine A: Input / Output / Linkage
Summary: Disciplined exploration of an abstract machine.

Takes: Between 10 and 20 minutes, including discussion.

Introduce idea of active, systematic exploration - and a framework to help build a simple

model. Help re-consider concepts of input and output. Encourage imaginative extensions of

diversity of input / output, types of dependency. Share different approaches to GUI

discovery.

Example Results
Input

Slider

Buttons
Red

Blue

Yellow

Others
Logo

Window ctrls

Keys/mods

Non UI

Linkage Output

Dial

Lights
Red

Blue

Yellow

Sounds?
Clunkclick

Chunk

Linear

Scales match

Suggested exercise:

Identify 'inputs' and 'outputs' (3 minutes).

Discuss what makes an input, what makes
an output. What others might there be?

Identify links and dependencies between

identified input and output. (3 minutes)

Discuss types of linkage - one-to-one,
multiple dependencies, linearity

Assess and assist group progress:

Simple ideas of 'an input is a button' should give way to

more complex concepts.

On analysis, 'random' clicking will crystallise into

techniques. Different individuals will have different

approaches – notice these and encourage participants to

try novel techniques.

Participants may not believe you about the logo / '?'.

Encourage them in this!

The group may need help to model the linkage.

Challenge them to increase their certainty.

Extending:

Discuss the differences between input if
seen as information / stimulus, and input
if seen as something that can be
stimulated

Introduce resizing, ctrl-click, keypresses,
platform etc.

Discuss APIs and automation.

Discuss discovery of input/output during
exercise, and effectiveness (or not) of
systematic approaches.

Teacher Awareness

The machine should be simple to explore. The

buttons, lights, slider and dial are clear and act

independently. There are no hidden tricks.

The blue button is a toggle, the red stays down as

long as it is pressed, and the yellow is transient.

The lights correspond to the state of the picture

button, not to the state of the mouse button.

The blue button is the only one that allows its state

to be fixed for further action/testing. Its state (and

by implication that of the blue light) has no effect on

any other input or output.

Paired testing is highly effective

The '?' and red logo in the bottom right corner

respond to rollover/mouseclick. They have no direct

effect on the machine (and are a common feature).

I like to let people find these before I tell them – it
helps them think of different surprises.

There are no known bugs

Suggested exercise:

Identify the events that affect the machine, the

behaviours it displays, and any information that gives

you clues / seems important (6 minutes).

Discuss events that are not triggered by testing /
testers

Use information (unanswered questions, models etc.)

to imagine links between events and behaviours. (3

minutes)

Discuss similarities between behaviour and state.
Draw state diagram and hunt bugs. Discuss different
state diagrams that could be used.

Machine B: Event / Behaviour / Information
Summary: Disciplined exploration of an abstract machine.

Takes: Between 20 and 30 minutes, including discussion.

Introduce a second exploratory framework. Highlight that testers/users are not always the

direct cause of an observed effect. Different behaviour / response indicates different state.

Imagining underlying system – making a model modelling and testing cause / effect. Use

state model to assist exploratory testing.

Assess and assist group progress:

Once the machine stops for the first time, some delegates

may think they have broken the machine. Some, perhaps

feeling they have proved their prowess, will go no further.

Gently ask them to reproduce the bug, and to describe

the actions that they took –!further investigation may lead

them to question their initial judgement.

Can the group tell you about their theories about what the

machine might be doing, and why it stops?

Ask the group about the lights –!how is the green one lit?

Teacher Awareness

The machine starts as soon as it is opened, and the

central dial spins until the machine stops. While the

machine is runnning, either the left or right dial

spins –!the blue button toggles between them. The

machine stops when either of the outer dials

reaches its clockwise maximum.

There is no 'reset' button: Once the machine stops,

the user needs to take external action (i.e. reload in

browser) to start the machine again

The machine has been designed to be a poor

subject for input/output/linkage –!and to also

introduce testers to the idea that they must observe

events that are not triggered by their own actions.

There is a (noisy) bug that can be observed if the

blue button is pressed as one of the dials reaches

the end of its travel. This bug is hard to reproduce

–!modelling the state transitions can help focus

attention and allow it to be observed more reliably.

Note: there are two ways of leaving a state, and

they have non-exclusive triggers. The bug appears

when the two exits happen close together –!the

state model shows this potential.

Example Results

Event

Information

Behaviour

Stop

Left
Dial

Right
Dial

button
swap active

Dial hits end

Bug?

Dial hits end

Press Button

Open machine

Machine stops –– why?

Button stops one dial, starts other
(when machine active?)

Button does nothing?
(when no dials moving)

Chess timer?

Filling two buckets with one hose?

Lights go on and off –
what do they tell me?

How do I light the green light?

Green/red dial segments?

Left dial / right dial / no dial

Suggested exercise:

Find bugs –!and justifications about why the

characteristics you have identified are indeed

bugs (5 minutes)

Discuss the methods used to discover the bugs
– were bugs found because of carefully-aimed
tests, or perceptive observation?

Discuss the discovery of the bugs; what bugs
were found first? Did different people find
different bugs?

Discuss the bugs themselves – are they all bugs?

Machine C: Testing against external expectations
Summary: Disciplined exploration of something with a known function.

Takes: Between 15 and 30 minutes, including discussion.

Finding bugs in something that has an accepted way of working. Ways that planning and

focussed error-guessing can help find bugs, and hinder the discovery of others. Experience

of observing unexpected problems and following leads. Judging faults.

Assess and assist group progress:

Some people may spend the entire period attacking the

input. Others may not change the timer to an appropriate

value for the short time available for testing. Encourage

delegates to take diverse approaches, and to design tests

fo fit the situation.

Judgement of a bug is key to exploration –!without

judgement, it is hard to consider which of many paths to

follow. Testers that concentrate entirely on ambiguous

characteristics may need to be challenged to find more

valuable faults.

Teacher Awareness

The logo and ? have useful information – you may

want to reveal this to the class.

At this stage, delegates should be thinking of test

design as well as exploration. You may want them

to consider risks, likely faults, or particularly

significant errors. They should also consider the

constraints of the test parameters; a few minutes

will not be enough to expose some issues, what

can they say about coverage?

As individuals find bugs, others in the group may be

distracted from their own paths (particularly if you're

using pair testing with ebullient testers).

Encouraging competition can motivate discovers to

keep their discovery secret until the period of

discovery is over.

Alternatively, you may wish to split the group into

two parts – the away group thinks about risk and

methods without testing, while the discovery group

think about the principles that might help guide the

others to discover bugs more quickly.

Changing the time on the PC Is a interesting

attack...

Known bugs
The circular timer runs 10% slow [this can be seen by comparison with your watch –!or by looking at the

numerical timer. If you set the timer to a minute, you can see this problem in the first 15s]

'Tick/Tock' is layered in front of the logo / ? mark text . Note – 'paused' is behind.

Start/Step – should be Start/Stop![is this a typo? If 'Step' is intentional, is it still a bug]

No ambient/aural indication when timer reaches 0. [also missing from production version]

Potential usability issues
Reset works as a button –!but without the graphic. No explanation of elements – particularly input text box.

Cursor appears in text box. Inconsistent response to tab. Nasty pink.

By design
Can't reset the timer while it's going [to avoid accidental reset]. Pausing the timer doesn't stop the

numerical timer [measures elapsed time]. New timer appears after timer counts to 0 [requirement to show

time since timer reached 0]. Can't stop count-up timer [ask why this might be necessary].

Suggested exercise:

Identify differences between the machines. For

each of the differences, make a judgement as

to whether the difference is a bug. Justify that

decision. (6 minutes)

Discuss the methods used to discover
differences.

Discuss whether new tests were needed to
justify assessment of differences as bugs.
What influenced the test design?

Discuss the judgements made.

Machine D: Discover and judge inconsistencies
Summary: Compare two similar machines

Takes: Between 15 and 30 minutes, including discussion.

Re-use and extension of existing method. Modelling failure / difference, designing tests

to verify model. Judgement of differences / bugs. Ways that repeat testing is influenced

by what has gone before – use of prior test results to guide test design.

Assess and assist group progress:

What methods are in use to explore the machine? Are

people making another map of input/output/linkage?

Comparing machines, or maps? Are they working from

memory, or do they have their subjects open side-by-

side?

In judging the differences, people will have to build

models of the internal logic/connections. How are they

building these models? Can they be drawn/articulated?

What tests can be devised to expose the differences?

Teacher Awareness

The class needs to know that Machine A and

Machine D are different versions of the same

machine. However, there is no information about

which is the earlier version. You might want to

discuss the influence that this information would

have on judgement of bugs etc.

Non-linear response is not visible at the

boundaries of slider travel. However, it's easy to

see the difference in the middle, or while

moving. How does this relate to BVA / ECP?

The machine is limited by possible interactions.

If it had a physical interface, or if its code/

circuitry/mechanics were exposed, different

tests would be available. You might want to

encourage the class to think of these tests.

Having two machines open at the same time

has no designed effect –!but are people

considering it?

Actions that didn't work on Machine A may not

even be tried in Machine D –!has anyone tried

hitting keys, resizing the window etc.? Perhaps

there are more differences? Try tab...

Differences

Slider scales differ May be a bug –!dial scales are the same in A and D. In A, there is a correspondence
between the dial and slider - in D, that correspondence is broken.

D Dial has a non-linear
response to slider

Unknown –!there is no evidence to indicate whether this is required or consistent
behaviour.

Middle button is red in A,
blue in D

Bug. Button works like a red button, but is blue. The two blue buttons work differently
in D. Is it a red button that is the wrong colour, or a blue button that works wrongly?
Given the button/light colour correspondence, which remains the same for blue and
yellow, it is likely to be a red button that is the wrong colour.

Yellow button affects blue
light in D, but not in A

Unknown –!not enough information to judge. Simple models of the interaction might be:
a) Only one light can be on at a time; b) the yellow button inverts the blue light; c) the
yellow button disconnects the blue light; d) the yellow and blue lights can't be on at the
same time. (a) and (b) can be disproved –!but it is not possible to manipulate the
machine directly to examine (c) or (d).

